Examen de Matemáticas 2ºBachillerato(CS) Enero 2020

Problema 1 Dada la función

$$f(x) = \frac{x^2 + 3x + 5}{x - 1}$$

Se pide:

- a) Calcular su dominio.
- b) Calcular sus puntos de corte con los ejes coordenados.
- c) Calcular su signo.
- d) Calcular su simetría.
- e) Calcular sus asíntotas.
- f) Calcular sus intervalos de crecimiento y decrecimiento, calculando sus extremos relativos.
- g) Calcular sus intervalos de concavidad y convexidad, calculando sus puntos de inflexión.
- h) Representación gráfica.
- i) Calcular las rectas tangente y normal a f en el punto de abcisa x = 0.

Solución:

- a) Dominio de $f: Dom(f) = \mathbb{R} \{1\}$
- b) Puntos de Corte
 - Corte con el eje OX hacemos $f(x) = 0 \Longrightarrow x^2 + 3x + 5 = 0 \Longrightarrow$ no hay puntos de corte con OX.
 - Corte con el eje OY hacemos $x = 0 \Longrightarrow f(0) = -5 \Longrightarrow (0, -5)$.

c)

	$(-\infty,1)$	$(1,+\infty)$
signo	_	+

- d) $f(-x) \neq \pm f(x) \Longrightarrow$ la función no es par ni impar.
- e) Asíntotas:

• Verticales: x = 1

$$\lim_{x \longrightarrow 1} \frac{x^2 + 3x + 5}{x - 1} = \pm \infty$$

$$\lim_{x \longrightarrow 1^-} \frac{x^2 + 3x + 5}{x - 1} = \left[\frac{9}{0^-}\right] = -\infty$$

$$\lim_{x \longrightarrow 1^+} \frac{x^2 + 3x + 5}{x - 1} = \left[\frac{9}{0^+}\right] = +\infty$$

• Horizontales: No hay

$$\lim_{x \to \infty} \frac{x^2 + 3x + 5}{x - 1} = \infty$$

• Oblicuas: y = mx + n

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2 + 3x + 5}{x^2 - x} = 1$$

$$n = \lim_{x \to \infty} (f(x) - mx) = \lim_{x \to \infty} \left(\frac{x^2 + 3x + 5}{x - 1} - x\right) = 4$$

Luego la asínto
ta oblicua es y=x+4

f)

$$f'(x) = \frac{x^2 - 2x - 8}{(x - 1)^2} = 0 \Longrightarrow x = -2, \ x = 4$$

		$(-\infty, -2)$	(-2,4)	$(4,+\infty)$
Γ.	f'(x)	+	_	+
	f(x)	creciente	decreciente	creciente

La función es creciente en el intervalo $(-\infty,-2)\cup(4,\infty).$

La función es decreciente en el intervalo $(-2,1) \cup (1,4)$.

La función tiene un máximo en (-2, -1) y un mínimo en (4, 11).

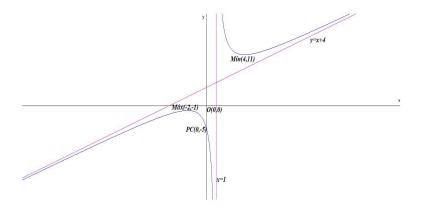
g)

$$f''(x) = \frac{18}{(x-1)^3} \neq 0$$

Luego la función no tiene puntos de inflexión.

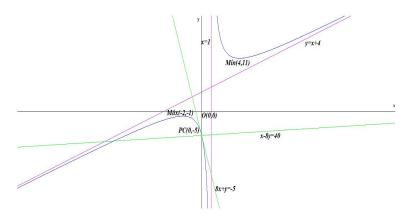
	$(-\infty,1)$	$(1,+\infty)$
f''(x)	_	+
f(x)	convexa∩	cóncava∪

Cóncava: $(1, \infty)$ Convexa: $(-\infty, 1)$



- h) Representación:
- i) Calcular las rectas tangente y normal a la gráfica de f en el punto de abcisa x=0:

Como m = f'(0) = -8 tenemos que



Recta Tangente : $y + 5 = -8x \Longrightarrow 8x + y = -5$

Recta Normal: $y + 5 = \frac{1}{8}x \Longrightarrow x - 8y = 40$

Como f(0) = -5 las rectas pasan por el punto (0, -5).