Examen de Matemáticas $1^{\underline{o}}$ Bachillerato(CN) Mayo 2024

Problema 1 Dada la función

$$f(x) = \frac{x^2 - 2x + 1}{x - 2}$$

Se pide:

- a) Calcular su dominio.
- b) Calcular sus puntos de corte con los ejes coordenados.
- c) Calcular su signo.
- d) Calcular su simetría.
- e) Calcular sus asíntotas.
- f) Calcular sus intervalos de crecimiento y decrecimiento, calculando sus extremos relativos.
- g) Calcular sus intervalos de concavidad y convexidad, calculando sus puntos de inflexión.
- h) Representación gráfica.
- i) Calcular las rectas tangente y normal a f en el punto de abcisa x = 0.

Solución:

- a) Dominio de f: Dom $(f) = \mathbb{R} \{2\}$
- b) Puntos de Corte
 - Corte con el eje OX hacemos $f(x) = 0 \Longrightarrow x^2 2x + 1 = 0 \Longrightarrow (1,0)$.
 - Corte con el eje OY hacemos $x = 0 \Longrightarrow f(0) = -\frac{1}{2} \Longrightarrow \left(0, -\frac{1}{2}\right)$.

 $^{\mathrm{c}}$

	$(-\infty,1)$	(1,2)	$(2,+\infty)$
signo	_		+

- d) $f(-x) \neq \pm f(x) \Longrightarrow$ la función no tiene simetrías.
- e) Asíntotas:

ightharpoonup Verticales: x=2

$$\lim_{x \longrightarrow 2} \frac{x^2 - 2x + 1}{x - 2} = \pm \infty$$

$$\lim_{x \longrightarrow 2^-} \frac{x^2 - 2x + 1}{x - 2} = \left[\frac{1}{0^-}\right] = -\infty$$

$$\lim_{x \longrightarrow 2^+} \frac{x^2 - 2x + 1}{x - 2} = \left[\frac{1}{0^+}\right] = +\infty$$

$$\lim_{x \longrightarrow -\infty} \frac{x^2 - 2x + 1}{x - 2} = -\infty, \quad \lim_{x \longrightarrow \infty} \frac{x^2 - 2x + 1}{x - 2} = \infty$$

• Oblicuas: y = mx + n

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2 - 2x + 1}{x^2 - 2x} = 1$$

$$n = \lim_{x \to \infty} (f(x) - mx) = \lim_{x \to \infty} \left(\frac{x^2 - 2x + 1}{x - 2} - x\right) = 0$$

Luego la asíntota oblicua es y = x

f) $f'(x) = \frac{x^2 - 4x + 3}{(x - 2)^2} = 0 \Longrightarrow x^2 - 4x + 3 = 0 \Longrightarrow x = 1, \ x = 3$

	$(-\infty,1)$	(1, 2)	(2,3)	$(3,+\infty)$
f'(x)	+	_	_	+
f(x)	creciente /	decreciente 📐	decreciente 📐	creciente /

La función es creciente en el intervalo $(-\infty, 1) \cup (3, +\infty)$.

La función es decreciente en el intervalo $(1,2) \cup (2,3)$.

La función tiene un máximo relativo en el punto (1,0) y un mínimo relativo en (3,4).

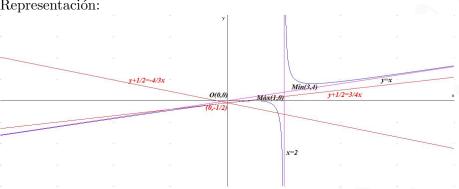
g)

$$f''(x) = \frac{2}{(x-2)^3} \neq 0$$

Luego la función no tiene puntos de inflexión.

	$(-\infty,2)$	$(2,+\infty)$
f''(x)	_	+
f(x)	convexa \frown	cóncava \smile

Cóncava: $(2, +\infty)$ Convexa: $(-\infty, 2)$ h) Representación:



i) Calcular las rectas tangente y normal a la gráfica de f en el punto de abcisa x=0: Como $m=f'(0)=\frac{3}{4}$ tenemos que

Recta Tangente :
$$y + \frac{1}{2} = \frac{3}{4}x$$

Recta Normal :
$$y + \frac{1}{2} = -\frac{4}{3}x$$

Como
$$f(0) = -\frac{28}{3}$$
 las rectas pasan por el punto $\left(0, -\frac{1}{2}\right)$.