Examen de Matemáticas $1^{\underline{o}}$ Bachillerato(CN) Mayo 2023

Problema 1 Dada la función

$$f(x) = \frac{2x^2 - 32}{x^2 - 1}$$

Se pide:

- a) Calcular su dominio.
- b) Calcular sus puntos de corte con los ejes coordenados.
- c) Calcular su signo.
- d) Calcular su simetría.
- e) Calcular sus asíntotas.
- f) Calcular sus intervalos de crecimiento y decrecimiento, calculando sus extremos relativos.
- g) Calcular sus intervalos de concavidad y convexidad, calculando sus puntos de inflexión.
- h) Representación gráfica.
- i) Calcular las rectas tangente y normal a f en el punto de abcisa x = 3.

Solución:

- a) Dominio de $f: Dom(f) = \mathbb{R} \{\pm 1\}$
- b) Puntos de Corte
 - Corte con el eje OX hacemos $f(x) = 0 \Longrightarrow 2x^2 32 = 0 \Longrightarrow (4,0), (-4,0).$
 - Corte con el eje OY hacemos $x = 0 \Longrightarrow f(0) = 32 \Longrightarrow (0, 32)$.

c)

	$(-\infty, -4)$	(-4, -1)	(-1,1)	(1,4)	$(4,+\infty)$
signo	+	-	+	_	+

- d) $f(-x) = f(x) \Longrightarrow$ la función es PAR.
- e) Asíntotas:

• Verticales: x = 1

$$\lim_{x \to 1^{-}} \frac{2x^2 - 32}{x^2 - 1} = \pm \infty$$

$$\lim_{x \to 1^{-}} \frac{2x^2 - 32}{x^2 - 1} = \left[\frac{-30}{0^{-}}\right] = +\infty$$

$$\lim_{x \to 1^{+}} \frac{2x^2 - 32}{x^2 - 1} = \left[\frac{-30}{0^{+}}\right] = -\infty$$

x = -1

$$\lim_{x \to -1} \frac{2x^2 - 32}{x^2 - 1} = \pm \infty$$

$$\lim_{x \to -1^-} \frac{2x^2 - 32}{x^2 - 1} = \left[\frac{-30}{0^+} \right] = -\infty$$

$$\lim_{x \to -1^+} \frac{2x^2 - 32}{x^2 - 1} = \left[\frac{-30}{0^-} \right] = +\infty$$

 \bullet Horizontales: y=2

$$\lim_{x\longrightarrow -\infty}\frac{2x^2-32}{x^2-1}=\lim_{x\longrightarrow \infty}\frac{2x^2-32}{x^2-1}=2$$

Oblicuas: No hay por haber horizontales.

f)
$$f'(x) = \frac{60x}{(x^2 - 1)^2} = 0 \Longrightarrow x = 0$$

	$(-\infty,0)$	$(0,+\infty)$		
f'(x)	_	+		
f(x)	decreciente 📐	creciente /		

La función es creciente en el intervalo $(0,1) \cup (1,\infty)$. La función es decreciente en el intervalo $(-\infty,-1) \cup (-1,0)$. La función tiene un mínimo en el punto (0,32).

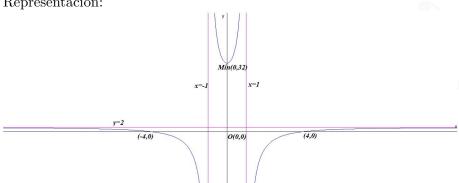
g) $f''(x) = -\frac{60(3x^2+1)}{(x^2-1)^3} = 0 \Longrightarrow 3x^2+1 = 0$ No tiene solución y, por tanto, no hay puntos de inflexión.

	$(-\infty, -1)$	(-1,1)	$(1, +\infty)$	
f''(x)	_	+	_	
f(x)	convexa \frown	cóncava \smile	convexa \frown	

Convexa: $(-\infty, -1) \cup (1, +\infty)$

Cóncava: (-1,1)

h) Representación:



i) Calcular las rectas tangente y normal a la gráfica de f en el punto de abcisa x=3:

Como m = f'(3) = 45/16 tenemos que

Recta Tangente :
$$y + \frac{7}{4} = \frac{45}{16}(x-3)$$

Recta Normal :
$$y - \frac{7}{4} = -\frac{16}{45}(x - 3)$$

Como f(3) = -7/4 las rectas pasan por el punto $\left(3, -\frac{7}{4}\right)$.

