Examen de Matemáticas 1ºBachillerato(CS) Marzo 2018

Problema 1 Dada la función

$$f(x) = \frac{4x}{(x-2)^2}$$

Se pide:

- a) Calcular su dominio.
- b) Calcular sus puntos de corte con los ejes coordenados.
- c) Calcular su signo.
- d) Calcular su simetría.
- e) Calcular sus asíntotas.
- f) Calcular sus intervalos de crecimiento y decrecimiento, calculando sus extremos relativos.
- g) Calcular sus intervalos de concavidad y convexidad, calculando sus puntos de inflexión.
- h) Representación gráfica.
- i) Calcular las rectas tangente y normal a f en el punto de abcisa x = 1.

Solución:

- a) Dominio de $f: Dom(f) = R \{2\}$
- b) Puntos de Corte
 - Corte con el eje OX hacemos $f(x) = 0 \Longrightarrow 4x = 0 \Longrightarrow (0,0)$ con OX.
 - Corte con el eje OY hacemos $x=0 \Longrightarrow f(0)=0 \Longrightarrow (0,0).$

c)
$$\begin{array}{|c|c|c|c|c|}\hline & (-\infty,0) & (0,+\infty)\\\hline & signo & - & +\\\hline \end{array}$$

- d) $f(-x) \neq \pm f(x) \Longrightarrow$ la función no es par ni impar.
- e) Asíntotas:

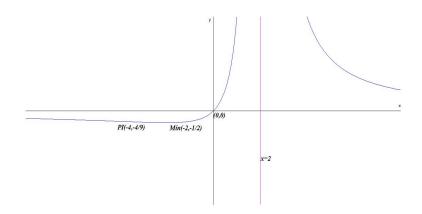
■ Verticales:
$$x = 2$$
 y tenemos $\lim_{x \longrightarrow 2^{-}} \frac{4x}{(x-2)^2} = \left[\frac{8}{0^{+}}\right] = +\infty;$ $\lim_{x \longrightarrow 2^{+}} \frac{4x}{(x-2)^2} = \left[\frac{8}{0^{+}}\right] = +\infty$

$$\bullet$$
 Horizontales: $y=0$ ya que $\lim_{x\longrightarrow\infty}\frac{4x}{(x-2)^2}=0$

• Oblicuas: No hay por haber horizontales.

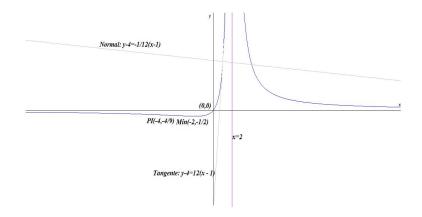
f)
$$f'(x) = \frac{4(x+2)}{(x-2)^3} = 0 \Longrightarrow x+2 = 0 \Longrightarrow x = -2$$

	$(-\infty, -2)$	(-2,2)	$(2,+\infty)$
f'(x)	_	+	_
f(x)	decreciente	creciente	decreciente


La función es decreciente en el intervalo $(-\infty, -2) \cup (2, \infty)$, creciente en el intervalo (-2, 2) y con un mínimo en (-2, -1/2).

g)
$$f''(x) = \frac{8(x+4)}{(x-2)^4} = 0 \Longrightarrow x+4=0 \Longrightarrow x=-4$$

	$(-\infty, -4)$	$(-4, +\infty)$
f''(x)	_	+
f(x)	convexa	cóncava


Convexa: $(-\infty, -4)$, cóncava: $(-4, 2) \cup (2, \infty)$ y con un punto de inflexión en (-4, -4/9).

h) Representación:

i) Calcular las rectas tangente y normal a la gráfica de f en el punto de abcisa x=1:

Como m = f'(1) = 12 tenemos que

Recta Tangente :
$$y - 4 = 12(x - 1)$$

Recta Normal :
$$y-4=-\frac{1}{12}(x-1)$$

Como f(1) = 4 las rectas pasan por el punto (1,4).